1
|
|
2
|
"""issue_21_ultrasound_form_delivery_date.ipynb
|
3
|
|
4
|
Automatically generated by Colab.
|
5
|
|
6
|
Original file is located at
|
7
|
https://colab.research.google.com/drive/1o_D5W6ARSNXdY-9G3g36h6B_R16cWs6g
|
8
|
|
9
|
## 1. Required dependencies
|
10
|
|
11
|
### ***please load the packages and update the constants/variables in the cell below. after that you can run the remainder of the script to reproduce the steps I took to audit the issue. thanks!***
|
12
|
"""
|
13
|
|
14
|
import pandas as pd
|
15
|
import numpy as np
|
16
|
|
17
|
|
18
|
|
19
|
|
20
|
|
21
|
PATH_TO_MATERNAL_DELIVERY = '/MaternalDelivery-2024-06-20.csv'
|
22
|
|
23
|
|
24
|
PATH_TO_ULTRASOUND = '/UltraSound-2024-06-14.csv'
|
25
|
|
26
|
|
27
|
def print_df_dimensions(df):
|
28
|
print(f"""checking dimensions:
|
29
|
dimensions: {df.shape}
|
30
|
nunique childpid: {df["childpid"].nunique()}
|
31
|
---------
|
32
|
""")
|
33
|
|
34
|
|
35
|
|
36
|
"""## 2. Run the script below to reproduce the data anomalies highlighted in this issue
|
37
|
|
38
|
### Loading data
|
39
|
"""
|
40
|
|
41
|
|
42
|
maternal_delivery_df = pd.read_csv(PATH_TO_MATERNAL_DELIVERY)
|
43
|
|
44
|
|
45
|
print_df_dimensions(maternal_delivery_df)
|
46
|
|
47
|
|
48
|
maternal_delivery_df = maternal_delivery_df.filter(regex = "childpid|matpid|datetime")
|
49
|
|
50
|
|
51
|
print("maternal_delivery_df columns selected:\n\t", maternal_delivery_df.columns.tolist())
|
52
|
|
53
|
maternal_delivery_df = maternal_delivery_df.rename(columns={"report_datetime":"report_datetime_matdeliverycrf", "delivery_datetime":"delivery_datetime_matdeliverycrf"})
|
54
|
|
55
|
print("\nnew column names for merging with ultrasound df:\n\t", maternal_delivery_df.columns.tolist())
|
56
|
|
57
|
|
58
|
ultrasound_df = pd.read_csv(PATH_TO_ULTRASOUND)
|
59
|
|
60
|
|
61
|
print_df_dimensions(ultrasound_df)
|
62
|
|
63
|
|
64
|
ultrasound_df = ultrasound_df.filter(regex = "childpid|matpid|datetime|delivery_date")
|
65
|
|
66
|
|
67
|
print("ultrasound_df columns selected:\n\t", ultrasound_df.columns.tolist())
|
68
|
|
69
|
ultrasound_df = ultrasound_df.rename(columns={"report_datetime":"report_datetime_ultrasoundcrf", "maternal_delivery_date":"maternal_delivery_date_ultrasoundcrf"})
|
70
|
|
71
|
print("\nnew column names for merging with maternal delivery df:\n\t", ultrasound_df.columns.tolist())
|
72
|
|
73
|
"""### Merging `maternal_delivery_df` and `ultrasound_df` on `childpid` to compare values for delivery dates across the two CRFs"""
|
74
|
|
75
|
|
76
|
merged_df = pd.merge(ultrasound_df, maternal_delivery_df, on=['childpid', 'matpid'], how='left')
|
77
|
|
78
|
|
79
|
print_df_dimensions(merged_df)
|
80
|
|
81
|
"""### Creating `issue_df` with records relevant to current issue by filtering `merged_df` where:
|
82
|
- delivery date is not missing
|
83
|
- delivery date in `maternal_delivery_df` does not match/equal delivery date in `ultrasound_df`
|
84
|
"""
|
85
|
|
86
|
|
87
|
issue_df = merged_df.copy()[~(merged_df['delivery_datetime_matdeliverycrf'] == merged_df['maternal_delivery_date_ultrasoundcrf'])]
|
88
|
|
89
|
|
90
|
issue_df = issue_df[issue_df['delivery_datetime_matdeliverycrf'].notna()]
|
91
|
|
92
|
|
93
|
print_df_dimensions(issue_df)
|